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Abstract: The chains of groups used in classifying states of the IBM are 

compared with the chains used in a composite model with j = 3/2 

fermion pairs. Many similarities are found, along with differences 

due to Pauli principle effects in continuum fermion pairs. The 

classifications are shown to be characterized by several different 

seniority numbers, which axe physically similar but formally dif- 

ferent in the two cases because fermion pair and boson pair states 

used to defined seniority in each model correspond to single bosom 

and four-femion clusters respectively in the other model. The 

SO(6) and SO(5) groups which define boson pair seniorities in the 

boson sextet model are isomorphic respectively, to SU(4) and Sp(4) 

which have simple physical interpretations in fermion quartet models. 
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1. Introduction. The basic building blocks of the IBM 

The Interacting Boson Model (IBM) of Arima and Iachello 1) has had 

remarkable success in describing many properties of nuclei using states of 

a basic sextet of bosom having angular momenta L = 0 and L = 2. However 

those bosons are clearly not fundamental constituents of the nucleus. This 

recalls the situation in particle physics when octets of mesons and baryons 

seemed to belong in octet representations of some unknown symmetry group. 

Attempts to place these octets in the fundamental representation of SU(8) 

failed, because these hadron octets were not fundamental objects. They are 

now considered to be composite systems of basic building blocks called quarks, 

classified in the fundamental representation of an SIJ(3) group. The meson and 

baryon octets are classified in the octet representation of this SU(3) group. 

This analogy suggests constructing the IBM sextet from more basic 

building blocks. The W(6) group which classifies the bosom in the fundamental 

sextet representation is discarded in the same way as SU(8) in hadron physics. 

A possible underlying "quark" structure is investigated by examining smaller .- 

groups with six dimensional representations. The way such six dimensional 

representations are constructed from the fundamental representations indicates 

possible composite structures for the boson sextet. Two candidates, SU(3) and 

SU(4), have sextet representations suitable for classifying a sextet of bosons 

having L = 0 and L = 2. Both have interesting physics but the two are incompa- 

tible and represent two completely different ways of constructing six boson 

states with J = Cl and J = 2; either from a pair of fundamental bosom with 

spin 1 or from a pair of fundamental fermions with spin 3/2. A six dimensional 

representation arises both for N(3) in the symmetric combination of two funda- 

mental triplets and in W(4) in the antisymmecric combination of two fundamental 

quartets. The W(3) is the familiar Elliot nodelL' whose basic building blocks 
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or "Elliot quarks" are the harmonic oscillator quanta of the nuclear harmonic 

oscillator shell model. The SU(4) corresponds to a model recently proposed by 

Ginocchio3) whose basic building blocks or "Ginocchio quarks" are fermions of 

spin 3/z. 

Although it seems inconsistent to consider the boson of the IBM as 

being simultaneously constructed from basic bosons of spin 1 and basic fermions 

of spin 312, both models seem to reproduce certain desirable features of the 

IBM. The Elliot model uses the L-S coupling scheme while the Ginocchio model 

uses the jj-coupling scheme. There may be completely different physics in the 

two domains where LS and jj couplings are good approximations,withboth having 

an independent boson description. The boson model would the" provide a smooth 

interpolation through the intermediate coupling region where neither the LS or 

jj coupling models are adequate. 

I" both the SU(3) and SU(4) models no simple SU(6) group occurs just 

as no SU(8) group is related in any simple way to the SU(3) quark model for 

hadrons. However, SU(6) plays a rather trivial role in the IBM. The complete 

set of states of the n boson configuration are classified in a single represen- 

tation of SU(6); namely, the one denoted by (n,O,O,O,O) and constructed from 

the totally symmetric combination of n fundamental sextets. I" either the SU(3) 

or SU(4) models, the states constructed by a totally symmetric combination of n 

sextets are exactly the same and with exactly the same quantum numbers as the 

corresponding SU(6) representation. However they are reducible representations 

of SU(3) or SU(4) respectively. The algebraic properties of this reduction are 

discussed below. 

The essential features of the SU(3) model have been well known for a 

long time since they are essentially the same as the original version of Elliot. 

However the algebraic structure of the SU(4) model is not generally known and 

Gfnocchio's original presentation refers to this group as SO(6) rather than 

SU(4). We therefore discuss this SU(4) model in more detail. 
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2. The SU(4) - SO(8) Model 

Let a+ mk represent the creation operator for a fermion in a state of 

angular momentum.j = 3/2 and projection m on the z axis and with an additional 

quantum number k labeling another degree of freedom with nk states. In the 

Ginocchio model, k is an additional angular momentum variable which is coupled 

with j = 3/2 to give the total angular momentum of the fenuion. However for our 

pUrpOSf5, the exact physical meaning of the quantum number k is irrelevant as 

we deal exclusively with sums over k products of operators having the form 

tt aa m m, : 1 a+ a+,- 
k mkmk 

and 

aa mm’ k z 1 amk”,,T; (lb) 

t 
aa 

m m’ ’ ; &&‘k (lc) 

- 
where k represents the state defined in the particular model to be conjugate 

to the state k. In the Ginocchio model where k is the projection of an angular 

momentum, i; = -k. We use the compact notation which drops the index k to 

define suns over k of bilinear products of these operators. 

The set of all operators of the type (1) with all values of m and III' 

define an SO(8) algebra 4) . The subgroup of the SO(8) algebra generated by all 

operators of the form (1~) which conserve the number of particles is SU(4), 

which is isomorphic to SO(6). However in the context of this model based on 

fermion creation operators in states labeled by an index m which takes on four 

values, the SU(4) description seems more appropriate. 

The operators (la) create a fermion pair in one of six possible states 

having exactly the angular momentum quantum numbers of the six bosons in the 

IBM. However these are not bosons but fermion pairs having these quantum 
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numbers. States corresponding to those of n bosons in the IBM can be-constructed 

by operating n times on the vacuum with the operators (la). However these corres- 

pond to boson states only when there is no appreciable overlap between fennion 

pair wave functions, so that the effects of the Pauli principle can be neglected. 

This requires that the number of pairs be small compared with the number of 

available fermion states specified by the number of allowed values for the quantum 

number k. When this condition is met, the states obtained by operating n times 

with the operators (la) are in a one to one correspondence with the states of the 

interacting boson model and can also be classified in representations of SO(8) 

and the subgroup SU(4). The model also contains fermion states with no analog in 

the boson model, constructed by operating with single creation operators or pair 

operations not of the form (1). Such states have recently been investigated in 

the description of odd-A nuclei 5) . However we do not consider them further here. 

3. The correspondence between bbson and fennion models 

\&en the number of pairs is not small compared with the number of 

available fermion states, the correspondence between the fermion pair model and 

the IBM must break down. States in the IBM which have more bosons than the total 

number of fermion pair state.s available in the fermion model, 2nk, clearly have 

no counterpart in the fermion model, as the analogous states created by the 

product of more than 2nk operators of the form (la) must vanish. A state created 

by raising a single operator of the form (la) with fixed values of m and m' to 

a power greater than nk also must vanish, since this operator populates only 

half of the levels available, those with eigenvalues m and m'. Thus there are 

states in the IBM which can be placed in one-to-one correspondence with states in 

the fermion model, like the basic sextet itself, while these are other states in 

the IBM whose counterparts in the fermion model vanish identically. Since both 

types of states in the IBM are in the same Hilbert space, Linear combinations of 

these states are good IBM states whose counterparts in the fernion model 
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constructed by the use of the operators (la) can be very peculiar. Two ortho- 

gonal linear combinations of IBM states one with a counterpart. in the fermion 

model and one whose counterpart vanishes give the same state when created by 

the same linear combinations of the operators (la). Thus the analogs in the fer- 

mion model of an orthonormal set of boson states may not be an orthonormal set. 

The problem of exhibiting the nature of the correspondence between the two 

models thus becomes one of choosing a particular basis in the IBM which has only two 

kinds of states, those whose counterparts in the fermion model vanish identically, 

and an orthogonal set of states whose counterparts in the fermion model are like- 

wise a set of orthogonal states. There should be no pairs of states in the IBM in 

this basis which are orthogonal and have nonvanishing analogs in the fermion model 

which are not orthogonal. We shall see below how such bases can be constructed. 

The key to the construction of thisbasis is the group structure. TWO 

states classified in irreducible representations of some group but with different 

quantum numbers must be orthogonal. If the basic sextet is classified according 

to a given group in both models, all the representations of this group which 
.- 

appear in the symmetric product of n sextets are uniquely defined by the algebra, 

independent of the particular model. In the IBM all the representations exist, 

since they are constructed explicitly by combining the products of n boson crea- 

tion operators and using the Clebsch-Gordan coefficients of the group. In the 

fermion model the same procedure leads to the same representations, except that 

some states may vanish identically. However, if any state vanishes, all of the 

states in the same irreducible representation must vanish, because they can be 

transformed into one another by the group. Thus any complete specification of 

states of the IBM labeled by groups with counterparts in the fermion model defines 

a basis whose counterparts in the fermion model must be an orthogonal set of states. 

The normalization problem is complicated and not considered as it is not essential 

to the discussion. Any orthogonal basis can be normalized. We therefore examine 

the subgroups of SO(8) and compare them with the chains of subgroups commonly 

used in the classification of the IBM. 



4. The subgroups of SO(E) 

A subgroup Sp(4) of SU(4) can be defined which gives the usual seniority 

for a shell with j = 3/Z. The six states of two fermions created by the opera- 

tion of the operators (la) on the vacuum are split by Sp(4) into two irreducible 

representations, one of seniority zero having angular inomentum .I = 0 and one 

of seniority 2 having .I = 2. These are analogous to the s and d bosons of 

the IBM. 

Another subgroup of SO(a) is rhe conventional quasi-spin group whose 

generators create and annihilate pairs of particles coupled to angular momentum 

zero. 

s+ = 1 (-1)(3/2)-m &', (7-a) 
IO0 

S _ = ,fo C-1) (3'2)-m a-,a, (Zb) 

so= m $l ++,-$I 

This is really an Sp(2) group which happens to be isomorphic to ordinary spin. 

These generators (2) do not cmmnute with all the generators of SU(4) but do 

commute with the Sp(4) subgroup of SU(4) mentioned above, and the direct 

product of these groups Sp(2) x Sp(4) is a subgroup of SO(8). We can thus 

define two chains of subgroups 

and 

so(a) 3 SU(4) ; Sp(4) 

SO(B) 2 SP(2) x Sp(4) ? Sp(4) . 

(34) 

(3b) 
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In a single j shell the irreducible representations of Sp(4) are 

characterized by two quantum numbers, the number of particles and the seniority 

number. The two chains (3) pick out these two quantum numbers in both possible 

orders. The subgroup SU(4) in Eq. (3a) picks out sets of states which all have 

the same number of particles but include different seniorities, while the sub- 

group Sp(2) x Sp(4) in Eq. (3b) picks out sets of states all having the same 

seniority but different numbers of particles. 

In the single j shell, the seniority number can be defined either from 

the Casimir operator of Sp(4) or from the Casimir operator of quasispin and the 

two definitions are equivalent. In the generalized Ginocchio model this equi- 

valence no longer holds. Seniority numbers can be defined using either the 

Sp(4) group or the quasispin group but the two are no longer the same. This is 

most easily seen by examining the properties of the operator 

Ai = 1 a;a;,a;m,aTm 
m,m' 

(4) 

This operator is clearly a scalar in SU(4) as it is the scalar product _- 

of the W(4) sextet of operators (la) with itself. For the single j shell this 

operator is trivial since it creates particles in all the states in the shell 

and has a nonvanishing matrix element only between the empty shell and the 

completely filled shell. However, once the additional degree of freedom defined 

by the quantum number k is included the operator (4) becomes nontrivial and adds 

a four particle cluster which is an W(4) singlet to any state. Since the 

operator is a scalar in SU(4), it is also a scalar in the subgroup Sp(4) and 

therefore does not change the quantum numbers defined by these two groups. 

However the operator (4) does not commute with the quasispin operators (2) and 

is not a quasispin scalar. It is also not a simple function of the quasispin 

generators. Thus the operator (4) can change quasispin and therefore the 

seniority number defined by quasispin whereas it cannot change the seniority 
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number defined by the group Sp(4). On the other hand, the quasispin operator 

(2a) which adds a pair of particles to the system is a quasispin generator and 

a scalar under Sp(4) but not under X(4). Thus the quasispin operator (2a) adds 

two particles to a system without changing the seniority as defined either by 

the quasispin or by Sp(4) but it can change the SU(4) quantum numbers. 

We now note that it is possible to add four particles to a given state 

in two different ways without changing the seniority number defined by Sp(4), 

namely by operating either with the operator (4) or by operating twice with the 

quasispin raising operator (2a). The first procedure preserves SU(4) but changes 

quasispin whereas the second preserves quasispin and changes SlJ(4). We are 

thus led to the conclusion that the same irreducible representations of Sp(4) 

must appear more than once in a given representation of SO(8) when there are 

more than four particles and that the two chains of subgroups (3) choose two 

different bases to distinguish between these equivalent representations of Sp(4), 

The physical meaning of these two different chains becomes evident below when we 

discuss the correspondence with the boson model. 

5. Three kinds of seniority 

The concept of seniority is the key to the understanding of the 

physical basis of the chains of subgroups (3) and the corresponding chains 

in the IBM. Consider a state of n bosons or fermion pairs. A seniority 

classification for such states characterized by a seniority number v picks out 

states in which the n particles are divided into two groups. There are v active 

or "senior" particles and n-v "spectator" particles usually grouped in pairs 

coupled to zero angular momentum. In the IBM there are three completely different 

ways of defining a seniority classification and a seniority number. 

1. The number of d bosons. States of n bosons can be defined which 

have a definite number nd of d-bosons and (n-n,) s-bosons. The number nd can be 

considered a kind of seniority in the fermion model where the s-boson is really 

a fermion pair coupled to angular momentum zero. 
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2. Boson-pair seniority. The operator (4) and its analog in the IBM 

can be considered as an operator which creates a pair of fenion pairs or bosons 

in a state of J=O. A seniority number vB can be defined as the number of particles 

in a state of n bosons or fermion pairs containing c-vB boson pairs in this 

special state (4) and vB unpaired bosons. Note that the pair state with .J=O 

is defined to be completely symmetric in all of the six states of the sextet. It 

is therefore a linear combination of a state of two s-bosons and a state ,,f 

two d-bosons coupled to L=O. Such a state is not an eigenstate of the number 

of s-bosonsnorof the number of d-bosons. Thus the two kinds of seniority 

defined by the quantum numbers nd and vB do not commute and define different 

bases for the states. 

3. d-boson pair seniority. A seniority number vd can be defined as 

the number of d-bosons which are not in pairs coupled to L=O. The remaining 

n-vd bosons are then either s-bosons or d-boson pairs coupled to L=O. Note 

that the d boson seniority number vd is compatible with either the number of 

d-bosons nd or the boson pair seniority vB defined above although nd and vB 

are mutually incompatible. 

These three seniority numbers form the basis for the chains of sub- 

groups (3) and the corresponding chains in the IBM. In these chains there are 

three groups whose irreducible representations are characterized by the three 

seniority quantum numbers nd, vB and vd. We first show this in the IBM and 

then return to the chains (3) and see the correspondence and the analogs of 

these three seniorities. 



6. Seniorities in the IBM 

The IBM begins with the SU(6) group whose totally symmetric represen- 

tations include all possible states of n bosons. For our purposes it is convenient 

to begin with U(6) which includes the total number operator. This is trivial 

in the IBM but is of interest in the fermion models where one considers quasi- 

spin operators (2) which change the number of particles. We now write the two 

chains of subgroups of U(6) commonly used in the IBM and note the similarities 

and differences between them and the chains for the fermion model (3). 

u(6): U(5)W(l) so(5)xu(l)xu(l) : sp(~4)xu(l)xu(1) 

n "d * "d "d * 

and 

U(6) ;- SO(6)xU(I) 5 SU(4)HJ(1) '-~0(5)W(1) s SP(4)xU(1) 

n 
"B * "B * "B "d * 

(5a) 

(~5b) 

These chains have a direct interpretation in terms of the three 

seniorities defined above. The separation of the boson sextet into five d 

bosons and one s boson appears as the decomposition of the U(6) group which 

acts on the whole sextet into a U(5) which acts only on d bosons and a U(1) 

which acts only on s bosons. The U(5) classification in the chain (5a) thus 

defines the seniority number nd. Seniority for boson pairs is defined by ortho- 

gonal groups. For the case of n boson states classified according to SU(n), 

the subgroup SO(n) defines a seniority classification. Thus the SO(6) group 

in the chain (5b) defines the boson seniority number v 
B' and the SO(5) group 

in both chains (5) define the d-boson seniority vd. The existence of two 

chains characterized by the appearance of the incompatible subgroups U(5) and 

SO(6) of U(6) reflects the incompatibility of the two kinds of seniority 

defined by nd and vB. The appearance of the SO(5) subgroup in both chains 
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reflects the compatibility of the seniority defined by vd with either n 
d 

or v 
B' 

The way in which each group picks a seniority number is indicated by labeling 

each group with the relevant quantum numbers in Eq. (5). 

7. The correspondence between the two sets of chains 

We now examine the correspondence between the chains (3) and (5). The 

groups SU(6) and SU(5) in the boson chain (5a) have no counterparts in the 

Ginocchio model and the groups SO(S) and Sp(2) in the Ginocchio chains (3) have 

no counterpart in the boson model. This lack of correspondence is due to the 

fundamental difference between bosons and fermions. The generators of SU(6) and 

of SU(5) are products of a boson creation operator and a boson annihilation 

operator. The analogs of these operators in the Ginocchio model are products of 

fermion pair creation operators (la) and annihilation operators (lb). These 

operators can be defined with a normalization so that their action on the basic 

sextet of two fermion states is exactly the same as the operation of the SU(6) 

and SU(5) generators on the boson sextet in the IBM. However these fermion 

operators do not form a closed sei-under commutation and do not define a Lie 

algebra. This reflects the basic physical difference between the two models. 

There is a one to one correspondence between the six states of the IBX 

and the two fermion states obtained by operating on a vacuum with the operators 

(la). However the correspondence is not so clear between two boson states 

and four fermion states obtained by operating on the vacuum with two operators 

of the form (la). All the four fermions in this four-fermion state are 

equivalent and there is no unique prescription for separating them into two 

pairs which could be considered as bosons. For example, the product of two 

operators of the form (la) creating fermions in states of 5=2 might be considered 

as a state of two d-bosons with no s-bosons present. But the quasi-spin 

lowering operator (2b) which annihilates s-bosons would not necessarily 
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annihilate this state because there is a piece of the wave function in which 

a fermion from one of the d-bosons and a fermion from the other is coupled to 

.I=0 and behaves like an s-boson. 

Similarly the difference between bosons and fermions is responsible 

for the absence in the IBM of the SO(8) group and the quasi-spin Sp(2) group of 

the Ginocchio model. This is most clearly seen by noting that raising the pair 

creation operators (la) and (2a) to a power greater than 2nk must give zero as 

they would create more fermions than the number of states available. In the 

boson case no such limit exists and operators creating s or d bosons can be 

raised to an arbitrary power. The analogs in the boson case of the quasi-spin 

raising and lowering operators (Za) and (2b) are the s boson creation and anni- 

hilation operators. These generate the noncompact Euclidean group in one 

dimension and have infinite dimensional representations. 

8. Boson pair seniority i, the two models 

In view of the difference between the bosons and fermions it is at 

first sight rather surprising that there is a clear one-to-one correspondence 

between the SO(6) group arising in the boson chain of subgroups (5b) and the 

SU(4) group of the fermion chain (3a). The reason for this correspondence can 

be seen by examining the operator (4) in the boson and fermion cases. We have 

seen that this operator is a scalar in N(4). Thus the W(4) group can be charac- 

terized as generating linear transformations on the sextet representation in a 

manner which leaves this particular scalar product of two sextets (4) invariant. 

As a result of the isomorphism between W(4) and SO(6) these can also be 

considered to be a group of linear transformations in a six dimensional real 

vector space. 
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The SO(6) group in the boson modeldefinesthe VB classification. It 

generates linear transformations on the basic sextet which leave invariant a 

particular scalar product of two creation operator sextets defined by the boson 

analog of Eq. (4). This operator creates the special L=O state which is the 

"spectator" state in the v B classification. Note that there are two states of 

a boson pair with angular momentum zero, one with two s-bosons and one with two d- 

bosons. The particular state defined by the SO(6) algebra is constructed 

symmetrically from all six boson states and is therefore a linear combination 

of the s boson and d boson states which is l/6 s boson and 5/6 d boson. The 

seniority number vB defined by the SO(6) group thus counts not only bosons 

having no L=O pairs but also L=O boson pairs in the state orthogonal to this 

particular state. 

We have thus defined two Lie algebras, a boson algebra acting on the 

basic boson sextet and a fermion algebra whose action on the fermion pair sextet 

creation operators (la) is exactly the same as the action of the boson algebra 

on the boson sextet. Thus given any state in the IBM constructed from products 

of boson creation operators combined in a way which transforms under SO(6) like 

an irreducible representation of the algebra, we can construct an analogous state 

in the fernion model by replacing each boson creation operator by the corres- 

ponding fermion pair creation operator. This fermion state may vanish as it 

may contain products of identical fermion creation operators. However if it 

does not vanish then its transformation properties under the group SU(4) are 

completely determined by the transformation properties of the sextet of pair 

creation operators (la). Fermion states created in this way which do not vanish 

then have exactly the same classification under SU(4) as the corresponding boson 

states under SO(6). 

Each nonvanishing representation of SU(4) defines a set of orthonormal 

states exactly analogous to the states of the corresponding 
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representations in the boson model. If any fermion state constructed this way 

vanishes then the entire X(4) representation in which this state is classified 

must also vanish. We thus see the following general features of the correspon- 

dence between the generalized Ginocchio model and the IBN. When the SO(6) classi- 

fication is used in the IBM a finite set of irreducible representations of SO(6) 

which appear in the IBM are in one-to-one correspondence with states in the 

generalized Ginocchio model which have the identical classification under SU(4). 

The remaining SO(6) representations in the IBM have no analog in the fermion model 

because they involve fermion states excluded by the Pauli principle. The only 

open problem for specific cases is to determine which of the SO(6) representations 

appearing in the IBM have counterparts in the femion model and which do not. 

This is easily seen by examining the representations of these groups arising in 

both models. 

The totally symmetric states of n bosom are classified in the single 

SU(6) representation denoted by (n,O,O,O,O). When this is reduced according to 

the chain (5b) it contains all the representations of SO(6) = SU(4) denoted by 

(O,VB, 0). where vB = n-2t and t = O,l...[n/2]. These are states containing both 

s and d bosons classified according to the boson-pair seniority vB defined above 

by the boson analog of the operator (4). 

In the fermion pair model the relevant representations of SO(S) are 

those denoted by (O,O,O,m), where m = x is the number of pairs in a half-filled 

shell. This representation of SO(E) contains the SU(4)xU(l) representations 

denoted by (O,vB,O)(n) where vB = O,l...m, n s vB+2t, and t = O,l...m-vg. The 

quantum number vB defined in this way is directly analogous to the boson pair 

seniority vB in the IBM. States with a given value of vB are seen to occur for 

values of n symmetrically located about the middle of the shell and varying in 

steps of 2 from vB to Zm-vB. For a fixed value of n C$ m the representations of 

SU(4) which appear are just those denoted by (O,vB,O) where vB = n-2t and 
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t = O,l...[n/Zl as in the boson case. Thus all the states in the IBM have non- 

vanishing counterparts in the fermion pair model for n 5 nk. Fern> +the 

fermion states are determined by particle-hole symmetry and the SO(6) represen- 

tations in the IBM having vB > 2nk-n do not occur in the fermion model. 

9. The correspondence between states in the two models 

We now examine the correspondence between specific states arising in 

the Ginocchio model and in the IBM. The set of 4% fermion states can be 

considered as one large shell. This shell is half filled when \ pairs of par- 

ticles are in the states. The states obtained by operating on the vacuum with 

pair creation operators (la) are in one-to-one correspondence with states obtained 

by operating with the boson creation operators of the IBM until the middle of 

this shell is reached; i.e. until there are "k pairs or bosons present. At 

this point the fermion character of the Ginocchio model becomes evident and it 

is no longer possible to obtain all of the states of the IBM. When the number 

of particles is greater than 2% the simplest description is in terms of 
.- 

creating holes in a completely filled shell with the states completely determined 

by particle-hole symmetry from the ones already obtained by having a number 

of bosons less than or equal to \. 

It is particularly interesting that the fenion character of the 

Ginocchio model has no effect at all in the one-to-one correspondence between 

the states of the Ginocchio model and the IBM as long as the number of particles 

is less than in a half-filled shell. This can be seen most easily by using the 

SU(4) classification and the boson pair seniority vB. The boson sextet is 

represented in the SU(4) algebra as the antisymmetric combination of two funda- 

mental quartets denoted by (0,2,0) with the Young diagram shown in fig. 1. 
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States of two bosons are classified in the IBM in the 21 dimensional 

representation of SU(6). In SU(4) the symmetric product of two sextets gives 

a reducible representation of SU(4) which can be broken down into a singlet and 

a 20-plet denoted by (0,4,0) with the Young diagram shown in fig. 2. 

In general the states of n bosons which are formed by the symmetric product of 

n sextets form a reducible representation of W(4) which contains all the repre- 

sentatians having the form (O,vB,O) appearing previously in the product of n-2 

sextets with vB = n-2-2t and t = O,l...[(n-2)/2] and one new representation with 

"B = n and the Young diagram shown in fig. 3. 

Thus each SU(4) representation can be labeled with the vB seniority 

number corresponding to the value of n for which it first appears. The seniority 

number v B is identical to the boson-pair seniority vB defined by the reduction 

of SU(6) to SO(6) in the IBM. -. 

After the middle of the shell is reached, no new larger representations 

of W(4) 0ccl.r. This is seen by noting that the nth power of a creation operator 

(la) exists and is nonvanishing for n ,< x, but must vanish for n > nk because 

each term includes the square of a fermion creation operator. Thus for n > nk 

no new representations of SU(4) occur, and the old ones are completely determined 

by particle-hole symmetry from the cases where n < nk. 

The exact nature of the correspondence between the states of the 

Ginocchio model and the IBM can be further clarified by examining the state 

having the largest value of L z for a given number n of bosons or fermion pairs. 

This is Lz = 2n in the IBM. The corresponding State in the Ginocchio model is 
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i t 
*(LZ=2n) = Ca3,2a1,2 Y-Id (6) 

where the operator on the right hand side is defined by Eq. (la). This state 

(6) exists for all values of n < n,, but vanishes for n > \ since the square 

of at least one fermion creation operator then appears in every term on the 

right hand side. Thus the state of maximum Lz for a given n in the IBM has an 

existing corresponding state in the Ginocchio model for all values of n up to 

and including a half-filled shell. 

We now examine the classification of this state (5) under the various 

groups in the chains (3) and (5). In the IBM this state has only d bosons and 

no s bosons, and there are no d boson pairs coupled to L=O, since the state has 

the maximum value of Lz allowed for the n boson system. It is therefore 

classified in the representation of SO(6) E SU(4) which corresponds to "boson-pair 

seniority" vB = n. The SU(4) representation is (O,n,O); namely the largest 

representation that occurs in the symmetric product of n sextets. 

We thus see that for each~-value of n < nk there is a one-to-one corres- 

pondence between the states classified in the largest SU(4) representation in 

the two models. States not classified in this largest SU(4) representation 

have a boson pair seniority vB smaller than n, and can be constructed by adding 

SU(4) singlet boson pairs to states of maximum seniority at lower values of n. 

The same construction is possible in the Ginocchio model by operating on a state 

of the form (5) with the operator (4) which creates two fermion pairs in an SU(4) 

singlet state. Thus we can define 

$(n,vB,LZ=2vB) = (At) 
(n-v,) I2 

(El+ 3,2=;,2)VBI o> (7) 
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This state of n pairs classified in the SU(4) representation corresponding to 

boson-pair seniority vB exists for values of n from vB to 2\-vB and therefore 

for all values less than or equal to I$. Thus we have shown that all the SU(4) 

representations appearing in the IBM for a given value of n < \ exist also in 

the Ginocchio model ani' are constructed by the prescription (7) to get the state 

with the highest value of Lz in the SU(4) supermultiplet. 

10. The SO(5) = Sp(4) groups in the two models 

Once the correspondence between the SO(6) boson pair seniority classi- 

fication in the IBM and the SU(4) classification in the Ginocchio model is 

established it is clear that a similar correspondence exists for the SO(5) z Sp(4) 

subgroup of SO(b) Z SU(4). We first consider the chain (5b). We have seen that 

the representation (O,O,O,O,n) of SU(6) contains the representations of 

SO(~) = SU(4) denoted by (O,vB,O), where vB _= n-Zt and t = O,l...[n/2]. Each 

of these representations contains the representations of SO(5) Z Sp(4) denoted 

by (O,v,), where vd = O,l...n-2t. The representation (O,v,) of Sp(4) thus occurs 

with a multiplicity [ 
"-"d -1 + 1 in the representation (n,O,O,O,O) of SU(6). The 2 

same reduction holds for the same SU(4) representations appearing in the fermion 

pair model. 

The SO(5) subgroup of SU(6) acts only on the d bosons and defines a 

seniority number in the conventional manner; namely the number of d bosons having 

no pairs coupled to L=O. The general state in this classification then contains 

a certain number of d bosons having no pairs coupled to L=O, a certain number 

of d boson pairs coupled to L=O and a certain number of additional s bosons. 

The SO(5) group thus defines transformations acting on the basic sextet and 

leaving invariant the creation operator for an s boson as well as the creation 

operator for a pair of bosons in the particular state analogous to Eq. (4). 

This is seen to be directly analogous to the Sp(4) group in the Ginocchio model 
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which generates linear transformations among the states of the basic fermion 

pair sextet and leaves invariant the quasispin creation operator (2a) as well 

as the four-particle SU(4) scalar operator defined by Eq. (4). 

The reduction of the representation (O,O,O,m) of SO(S) according to 

the chain (3b) shows that the representation (0,~~) of Sp(4) occurs with values 
UP" 

of the Sp(2) quasispin S = m-v-Zr, where r = O,l...[ -+I. We can now see the 

correspondence between this fermion chain (3bI and the boson chain (5a). If 

the quasispin operators (2) are interpreted as creation and annihilation 

operators for s bosons, a state with quasispin S classified in the representation 

(O,O,O,m) of SO(S) contains a number of "d bosons" given by nd = m-s. For fixed 

values of S, m and n I m, the representations (0,~~) of Sp(4) occur in the repre- 

sentations (O,O,O,m) of SO(a) for vd = m-S-2r = nd-2r, where r = O,l...[q/Z]. 

These are just the representations of Sp(4) which appear in the representation 

(n,O,O,O) of N(5). Thus the number of "d bosons" defined by the quasispin 

S in the SO(8) fermion model is the same as the number of d bosons defined by 

the SU(5) subgroup of SU(6) in the_ IBM for all values of n < m. 

11. The- number of d-bosons in both models 

We now consider the chain (5a).‘ The representation (n,O,O,O,O) of 

SlJ(6) contains all the SU(5) representations denoted by (nd,O,O,O), where 

"d = 0,l . ..n and is just the number of d bosons. These representations of SU(5) 

contain the representations of Sp(4) Z SO(5) denoted by (0,~~) where 

Vd = nd-2r and r = O,l...[(n --v d d 
)/2]. These contain states with (n,-v,) d-boson 

pairs coupled to L=O, (n-n,) s-bosons and vd d-bosons not in L=O pairs. The 

representation (0,~~) thus is seen to occur in the SU(6) representation (n,O,O,O,O) 
n-v 

with a multiplicity [ -+] 
"-Vd 

+ 1 since it appears for all values of r c [,I 

and n d = vtzr. This agrees with the previous result from the chain (5b). The 

states of d boson-pair seniority vd occur in the n boson system for states 

having vd d-bosons, vd+2 d-bosons, etc. up to n-l or n d-bosons depending 
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upon whether n-v d is odd or eve". The states with vd = n and vd = n-l occur 

only once. The states with vd = n-2 and n-3 occur twice, the states with 

"d = n-4 and n-5 occur three times, etc. 

12. The three seniorities in the two models 

We are now in a position to see the basic physics underlying the 

correspondence between the two models and the classifications. The three 

different seniority numbers nd, "B and vd can be defined in the two models. S0m.Z 

of them are described by the same group in both models, others are not. The 

boson pair seniority "umber VB which defines the "umber of bosons in a state 

which are not in the particular state defined by Eq. (4) is defined in both models 

by the (O,vB,O) representation of SO(6) Z SU(4). Also the d-boson pair seniority 

number vd which is the number of particles that are neither s bosons "or boson 

pairs coupled to L=O in the particular state (4) is defined by both models by 

the (0,~~) representation of SO(5) : Sp(4). But the number nd of d bosons 

cannot be defined in a" analogous way in both cases. In the boson case, nd is 

defined by the (n,,O,O,O) representation in the SIJ(5) classification. In the 

fermion model, the Sp(2) quasispin algebra (2) defines a quantum number S which 

can be related to n d E m-S; i.e. the number of fermion pairs which are not in 

the 2 boso"" state defined by the creation operator (Za). There is a one-to- 

one correspondence between these two separations into s and d bosons as far as 

counting the states is concerned, but the two groups do not have counterparts in 

the other model. 
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FIGURE CAPTIONS 

Fig. 1 Young diagram for (O,Z,O). 

Fig. 2 Young diagram for (0,4,0). 

Fig. 3 Young diagram for (O,vB,O). 
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